I.1.1 Distance From one Subspace to Another

Definition I.1:1. For any nonzero vectors u and v in the Hilbert space \mathcal{H} , we define

dist
$$(u, v)$$
) = $(1 - |\langle u_1, v_1 \rangle|^2)^{1/2}$

where $u_1 = u/||u||$ and $v_1 = v/||v||$.

Definition I.1:2. If u is a nonzero vector and N is a nonzero (not necessarily closed) subspace we define

$$\operatorname{dist}(u, N) = \inf_{v \neq 0 \text{ in } N} \operatorname{dist}(u, v).$$

If *u* is nonzero and N = 0 we define dist(u, N) = 1.

Definition I.1:3. If N_1 and N_2 are nonzero subspaces, we define

$$\operatorname{dist}(N_1, N_2) = \sup_{u \neq 0 \text{ in } N_1} \inf_{v \neq 0 \text{ in } N_2} \operatorname{dist}(u, v).$$

If $N_1 = 0$ we define, for any N_2 , dist $(N_1, N_2) = 0$. If N_1 is nonzero and $N_2 = 0$ we define dist $(N_1, N_2) = 1$.

Obviously $0 \le \operatorname{dist}(u, v) \le 1$, $0 \le \operatorname{dist}(u, N) \le 1$ and $0 \le \operatorname{dist}(N_1, N_2) \le 1$. If *M* is closed then $\operatorname{dist}(N, M) = 0$ iff $N \subset M$.

Remark 1. If M_u and M_v are one-dimensional subspaces spanned by the vectors u and v respectively, we have $dist(M_u, M_v) = dist(u, M_v) = dist(u, v)$. If N_1 is nonzero we have $dist(N_1, N_2) = \sup_{v \neq 0 \text{ in } N_1} dist(v, N_2)$.

Remark 2. Note that dist(u, v) = dist(v, u) for any (nonzero) vectors, but $dist(M_1, M_2)$ need not be equal to $dist(M_2, M_1)$. Although one gets a metric on the set of closed subspaces by defining

$$d(M_1, M_2) = \max (dist(M_1, M_2), dist(M_2, M_1)),$$

(see Kato (1) p. 198, $d(M_1, M_2) = ||P_1 - P_2||$ by theorems I.1:7 and I.1:13 below, where P_1 and P_2 are the projections on M_1 and M_2 respectively) the "single-directed" distance $dist(M_1, M_2)$ will be important in the present theory.

Lemma I.1:4. Let u be a nonzero vector, M a nonzero closed subspace and P the projection on M. Then

$$dist(u, M) = dist(u, aPu)$$

where *a* is any complex nonzero number. If ||u|| = 1, then

$$\operatorname{dist}(u, M) = \|u - Pu\|.$$

For any vector v in M which is not in the form aPu, a complex and nonzero, we have

dist(u, v) > dist(u, M).

Proof. Let *a* be a nonzero complex number and *v* be any nonzero vector in *M*. Since by definitions I.1:1 and I.1:2, dist(u, v) and dist(u, M) does not change if we multiply by a nonzero complex number, it is no limitation to assume that ||u|| = 1. From definition I.1:1 then follows that dist(u, aPu) = ||u - Pu||. We can choose a complex number *b* such that $v_1 = bv$ is equal to the projection of *u* on the one-dimensional subspace spanned by *v*. Then v_1 and $u - v_1$ are orthogonal and $dist(u, v) = ||u - v_1||$. We have

$$u - v_1 = (u - Pu) + (Pu - v_1)$$

where (u - Pu) and $(Pu - v_1)$ are orthogonal $(Pu - v_1)$ is in M and u - Pu is orthogonal to M). Thus

$$\|u - v_1\|^2 = \|u - Pu\|^2 + \|Pu - v_1\|^2$$

and

$$dist(u, v) = ||u - v_1|| \ge ||u - Pu|| = dist(u, Pu).$$

This shows that

$$dist(u, M) = \inf_{v \neq 0 \text{ in } M} dist(u, v)$$

= dist(u, Pu) = dist(u, aPu) = ||u - Pu||

If v is not of the form v = cPu, c complex and nonzero, then $||Pu - v_1|| > 0$ and

$$dist(u, v) = ||u - v_1|| > ||u - Pu|| = dist(u, Pu).$$

Lemma I.1:5. For any nonzero u, v, w in \mathcal{H} , we have

$$\operatorname{dist}(u, w) \leq \operatorname{dist}(u, v) + \operatorname{dist}(v, w).$$

Proof. Choose $u_1 = au$, $v_1 = bv$, $w_1 = cw$, a, b, c complex numbers such that $||u_1|| = ||v_1|| = ||w_1|| = 1$, $\langle u_1, v_1 \rangle \ge 0$ and $\langle v_1, w_1 \rangle \ge 0$. Set

$$u_1 = \cos A \cdot v_1 + \sin A \cdot u'_1, \quad \cos A = \langle u_1, v_1 \rangle,$$

$$w_1 = \cos B \cdot v_1 + \sin B \cdot w'_1, \quad \cos B = \langle w_1, v_1 \rangle,$$

$$\langle u'_1, v_1 \rangle = \langle w'_1, v_1 \rangle = 0, \quad 0 \le A, B \le \frac{\pi}{2}.$$

If $A + B \le \pi/2$

$$\langle u_1, w_1 \rangle = \cos A \cos B + \sin A \sin B \cdot d, \quad d = \langle u'_1, w'_1 \rangle, \quad |d| \le 1$$

 $|\langle u_1, w_1 \rangle| \ge \cos A \cos B - \sin A \sin B = \cos(A + B) \ge 0$