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I.1.1 Distance From one Subspace to Another
Definition I.1:1. For any nonzero vectors 𝑢 and 𝑣 in the Hilbert spaceℋ, we define

dist(𝑢,𝑣)) = (1 − |⟨𝑢1, 𝑣1⟩|2)
1/2

where 𝑢1 = 𝑢/‖𝑢‖ and 𝑣1 = 𝑣/‖𝑣‖.
Definition I.1:2. If 𝑢 is a nonzero vector and 𝑁 is a nonzero (not necessarily
closed) subspace we define

dist(𝑢,𝑁) = inf
𝑣≠0 in𝑁

dist(𝑢,𝑣).

If 𝑢 is nonzero and 𝑁 = 0 we define dist(𝑢,𝑁) = 1.
Definition I.1:3. If 𝑁1 and 𝑁2 are nonzero subspaces, we define

dist(𝑁1,𝑁2) = sup
𝑢≠0 in𝑁1

inf
𝑣≠0 in𝑁2

dist(𝑢,𝑣).

If 𝑁1 = 0 we define, for any 𝑁2, dist(𝑁1,𝑁2) = 0. If 𝑁1 is nonzero and 𝑁2 = 0
we define dist(𝑁1,𝑁2) = 1.

Obviously 0 ≤ dist(𝑢,𝑣) ≤ 1, 0 ≤ dist(𝑢,𝑁) ≤ 1 and 0 ≤ dist(𝑁1,𝑁2) ≤ 1. If 𝑀
is closed then dist(𝑁,𝑀) = 0 iff 𝑁 ⊂ 𝑀 .
Remark 1. If 𝑀𝑢 and 𝑀𝑣 are one-dimensional subspaces spanned by the vectors
𝑢 and 𝑣 respectively, we have dist(𝑀𝑢,𝑀𝑣) = dist(𝑢,𝑀𝑣) = dist(𝑢,𝑣). If 𝑁1 is
nonzero we have dist(𝑁1,𝑁2) = sup𝑣≠0 in𝑁1

dist(𝑣,𝑁2).

Remark 2. Note that dist(𝑢,𝑣) = dist(𝑣,𝑢) for any (nonzero) vectors, but dist(𝑀1,𝑀2)
need not be equal to dist(𝑀2,𝑀1). Although one gets a metric on the set of closed
subspaces by defining

d(𝑀1,𝑀2) = max(dist(𝑀1,𝑀2), dist(𝑀2,𝑀1)),

(see Kato (1) p. 198, d(𝑀1,𝑀2) = ‖𝑃1 − 𝑃2‖ by theorems I.1:7 and I.1:13 below,
where 𝑃1 and 𝑃2 are the projections on 𝑀1 and 𝑀2 respectively) the “single-
directed” distance dist(𝑀1,𝑀2) will be important in the present theory.
Lemma I.1:4. Let 𝑢 be a nonzero vector, 𝑀 a nonzero closed subspace and 𝑃 the
projection on 𝑀 . Then

dist(𝑢,𝑀) = dist(𝑢,𝑎𝑃 𝑢)
where 𝑎 is any complex nonzero number. If ‖𝑢‖ = 1, then

dist(𝑢,𝑀) = ‖𝑢 − 𝑃 𝑢‖.

For any vector 𝑣 in 𝑀 which is not in the form 𝑎𝑃 𝑢, a complex and nonzero, we
have

dist(𝑢,𝑣) > dist(𝑢,𝑀).
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Proof. Let 𝑎 be a nonzero complex number and 𝑣 be any nonzero vector in 𝑀 .
Since by definitions I.1:1 and I.1:2, dist(𝑢,𝑣) and dist(𝑢,𝑀) does not change if
we multiply by a nonzero complex number, it is no limitation to assume that
‖𝑢‖ = 1. From definition I.1:1 then follows that dist(𝑢,𝑎𝑃 𝑢) = ‖𝑢 − 𝑃 𝑢‖. We
can choose a complex number 𝑏 such that 𝑣1 = 𝑏𝑣 is equal to the projection of 𝑢
on the one-dimensional subspace spanned by 𝑣. Then 𝑣1 and 𝑢−𝑣1 are orthogonal
and dist(𝑢,𝑣) = ‖𝑢 − 𝑣1‖. We have

𝑢 − 𝑣1 = (𝑢 − 𝑃 𝑢) + (𝑃 𝑢 − 𝑣1)

where (𝑢 − 𝑃 𝑢) and (𝑃 𝑢 − 𝑣1) are orthogonal (𝑃 𝑢 − 𝑣1 is in 𝑀 and 𝑢 − 𝑃 𝑢 is
orthogonal to 𝑀). Thus

‖𝑢 − 𝑣1‖2 = ‖𝑢 − 𝑃 𝑢‖2 + ‖𝑃 𝑢 − 𝑣1‖2

and
dist(𝑢,𝑣) = ‖𝑢 − 𝑣1‖ ≥ ‖𝑢 − 𝑃 𝑢‖ = dist(𝑢,𝑃 𝑢).

This shows that

dist(𝑢,𝑀) = inf
𝑣≠0 in𝑀

dist(𝑢,𝑣)

= dist(𝑢,𝑃 𝑢) = dist(𝑢,𝑎𝑃 𝑢) = ‖𝑢 − 𝑃 𝑢‖.

If 𝑣 is not of the form 𝑣 = 𝑐𝑃 𝑢, c complex and nonzero, then ‖𝑃 𝑢 − 𝑣1‖ > 0 and

dist(𝑢,𝑣) = ‖𝑢 − 𝑣1‖ > ‖𝑢 − 𝑃 𝑢‖ = dist(𝑢,𝑃 𝑢).

Lemma I.1:5. For any nonzero 𝑢, 𝑣, 𝑤 in ℋ, we have

dist(𝑢,𝑤) ≤ dist(𝑢,𝑣) + dist(𝑣,𝑤).

Proof. Choose 𝑢1 = 𝑎𝑢, 𝑣1 = 𝑏𝑣, 𝑤1 = 𝑐𝑤, 𝑎, 𝑏, 𝑐 complex numbers such that
‖𝑢1‖ = ‖𝑣1‖ = ‖𝑤1‖ = 1, ⟨𝑢1, 𝑣1⟩ ≥ 0 and ⟨𝑣1,𝑤1⟩ ≥ 0. Set

𝑢1 = cos𝐴 ⋅ 𝑣1 + sin𝐴 ⋅ 𝑢′
1, cos𝐴 = ⟨𝑢1, 𝑣1⟩,

𝑤1 = cos𝐵 ⋅ 𝑣1 + sin𝐵 ⋅ 𝑤′
1, cos𝐵= ⟨𝑤1, 𝑣1⟩,

⟨𝑢′
1, 𝑣1⟩ = ⟨𝑤′

1, 𝑣1⟩ = 0, 0 ≤ 𝐴, 𝐵 ≤ 𝜋
2

.

If 𝐴 + 𝐵 ≤ 𝜋/2

⟨𝑢1,𝑤1⟩ = cos𝐴cos𝐵 + sin𝐴sin𝐵 ⋅ 𝑑, 𝑑 = ⟨𝑢′
1,𝑤′

1⟩, |𝑑|≤ 1
|⟨𝑢1,𝑤1⟩| ≥ cos𝐴cos𝐵 − sin𝐴sin𝐵 = cos(𝐴 + 𝐵) ≥ 0
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